

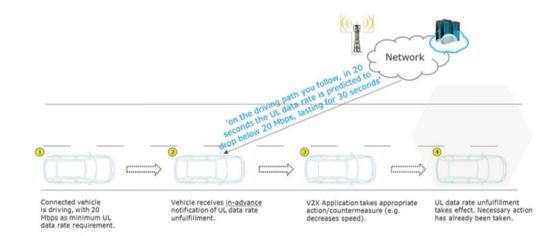
Predictive Quality of Service for Automated Driving Systems

Mate Boban (mate.boban@huawei.com)

Principal Research Engineer

Huawei Munich Research Center

www.huawei.com


HUAWEI TECHNOLOGIES CO., LTD.

- The Concept of Predictive Quality of Service (PQoS)
- Exemplary PQoS Use Cases
- PQoS Techniques
- Case Study: Predicting Uplink Throughput for V2I
- PQoS in (Pre)standardization
- Outlook and Conclusions

Predictive QoS - Background

- First introduced for V2X communication
- V2X applications can operate with different configurations (automation level, inter-vehicle gap, etc.)
- Application may need to adjust configuration in case of QoS change
- Sudden adjustment may affect the service continuity, comfort, and safety
- Applications benefit from early QoS change notification for graceful adaptation

Source: 5GAA Whitepaper "Making 5G Proactive and Predictive for the Automotive Industry"

Core idea behind PQoS: Network informs the V2X application of expected/estimated QoS change **before the change occurs**

PQoS: Application \Leftrightarrow Network Interaction

- PQoS aims to predict, adapt, and inform
 - Predict network behavior ahead of time
 - Adapt network behavior in order to better support the application
 - Inform application on current and predicted metrics

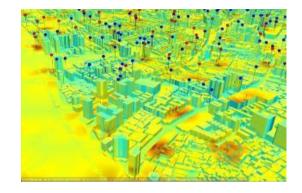
VW, DT, Huawei, White Paper

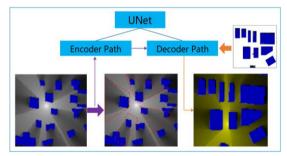
"AQoSA: Agile Quality-of-Service Adaptation: An Enabler for Advanced Connected-Vehicle Applications", (2018 Jan)

Exemplary PQoS Use Cases in V2X and IIoT

5	KPI	IIoT Applications		V2X Applications		
		Closed-loop control	Mobile robot control	HD map collecting and sharing	Teleoperated driving	High-density platooning
Services		Control	Control	control configure		Control
		guarantee safe interaction between production machinery and human operators	interconnect several robots over a large area to fulfill a common task	build an HD map of the environment to improve safety and provide optimal route selection	control of vehicles by a remote operator (either human or software)	enable vehicles to travel in close proximity at high speeds to decrease fuel consumption
Latency [ms]		150	From 1 to 500	≤ 100	≤ 50	from 10 to 25
Reliability [%]		from 99.9999 to 99.999999	> 99.9999	99	99 (uplink) 99.999 (downlink)	from 90 to 99.99
Data rate		very low	30/50 Mbps	up to 500 Mbps for HD sensor data	30/50 Mbps	30/50 Mbps
P Q o S	Role of predictions	prevent harm to human operators in case of malfunctions	improve productivity	ensure reliable services	guarantee a minimum safety level at all times	ensure continuous operation (even without connectivity)
	Prediction window	milliseconds	seconds/minutes	minutes/hours	seconds/minutes	seconds/minutes

HUAWEI TECHNOLOGIES CO., LTD.

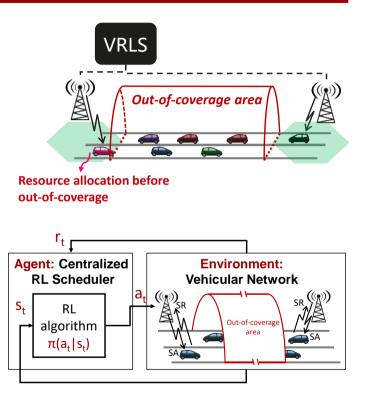

Selected PQoS Techniques


- Radio map prediction
- Predictive scheduling
- Decreased Application Downtime

Radio Maps

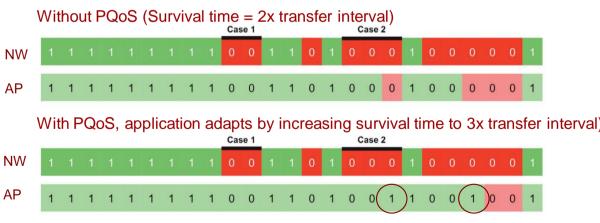
- "Base layer" for PQoS
- Measuring or predicting radio signal parameters (e.g., SNR, RSRP, ...)
- Use radio map to predict app-level QoS
- Methods
 - Measurements (pros: accuracy; cons: costly, not adaptive)
 - Simulations (pros: adaptive; cons: complexity)
 - ML-based methods (e.g., [1]) (pros: inference speed; cons: needs large training dataset)

[1] Levie, R., Yapar, Ç., Kutyniok, G., & Caire, G. (2021). RadioUNet: Fast radio map estimation with convolutional neural networks. *IEEE Transactions on Wireless Communications*



Predictive Scheduling

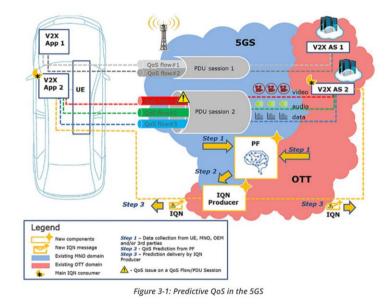
- Using network information to predictively assign resources
- Use case: prescheduling for out-of-coverage (OOC) areas
- Vehicular Reinforcement Learning scheduler (VRLS) learns scheduling assignments in OOC based on feedback from vehicles


[2] T. Sahin, R. Khalili, M. Boban, A. Wolisz: 'VRLS: A Unified Reinforcement Learning Scheduler for Vehicle-to-Vehicle Communications', IEEE VTC-Fall, 2019.

Application-level PQoS Technique: Decreased Application Downtime

- Predictive QoS enables application to take actions before application goes into "Down" mode
- Network service status: "Up" (QoS requirement fulfilled: green) and "Down" (not fulfilled: red)
- Application status: Normal mode (green) and Down mode (red)
- Survival time: time that application can "survive" without network service

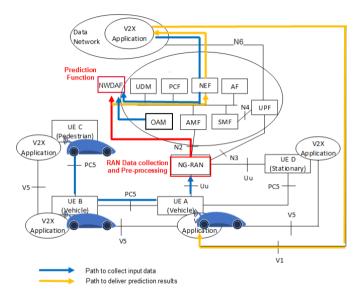
- Comparison of network (NW) and application (AP) failures with and without PQoS
- With PQoS, application can gracefully degrade the performance without going into "Down" mode



Modified from: 5G-ACIA whitepaper "Key 5G Use Cases and Requirements"

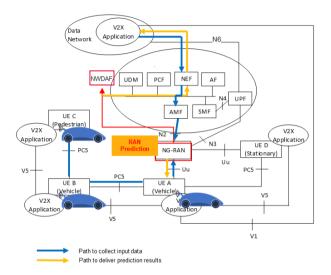
PQoS in Prestandardization

- V2X: 5GAA Whitepaper "Making 5G Proactive and Predictive for the Automotive Industry"
- IIoT: 5G-ACIA Whitepaper "5G for Automation in Industry: Primary use cases, functions and service requirements"



Source: 5GAA Whitepaper "Making 5G Proactive and Predictive for the Automotive Industry"

PQoS in Standardization


- 3GPP SA defined Network Data Analytics Function (NWDAF) in TS 29.520
 - QoS provisioning and policy adjustment
 - Mobility and topology management
 - Sharing of analytics and QoS policy
- 3GPP RAN3: "Study on enhancement for data collection for NR and ENDC" (ongoing)
 - Studies high level principles for RAN AI
 - Assessment of standardization impacts of nodes/functions that provide training and inference data

Some Open Research Issues

- Q1: How to enable RAN-side PQoS functionalities?
- Q2: How to collect data and update model for different use cases?
- Q3: How can network ensure (near-)deterministic timing requirements for cooperative automated driving?
- Q4: How reliant can a vehicle be on prediction with certain probability (e.g., Throughput > 10 Mbps for next 10 sec with 99% probability)?

Why is RAN PQoS needed?

- Avoid high overhead
- Collect highly granular data
- Provide real-time prediction

HUAWEI TECHNOLOGIES CO., LTD.

Conclusions

- Predictive QoS is a powerful technology and a possible game changer for V2X (and other vertical) use cases requiring reliable and predictable performance
- Strong interest in PQoS from key players in V2X and other verticals (IIoT, eHealth)
- PQoS is a complex concept that involves data analytics, ML, control theory, optimization, ...
- 5G enabled a small subset of PQoS functionalities (predict, inform, no adapt), with many open issues to tackle
- 6G can enable the full suite of PQoS functionalities in both RAN and core

Source: Saad, Walid, Mehdi Bennis, and Mingzhe Chen. "A vision of 6G wireless systems: Applications, trends, technologies, and open research problems." *IEEE network* 34.3 (2019): 134-142.

Thank you www.huawei.com